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Executive Summary 

The main aim of this deliverable (D2.1. Architecture, Interface, and Benchmark Specification) 
is to provide the overall architectural blueprint of the SYCLOPS hardware--software stack 
together with inter and intra-layer interface definitions. Given that SYCLOPS is a multi-layered 
stack, this deliverable ensures that the cross-layer interfaces and APIs are well defined to 
ensure compatibility. This deliverable also provides a clear specification of each of the three 
SYCLOPS uses cases, and identifies key metrics that are relevant to measuring the 
improvement that SYCLOPS brings about for each use case. 

The first part of this deliverable (Sections 1 and 2) provides an introduction to the SYCLOPS 
project and a high-level overview of the overall architecture. The second part of this deliverable 
(Sections 3, 4) elaborates on the two core layers of the SYCLOPS stack (the Infrastructure 
and Platform layers) by (i) describing the key components in each layer, and (ii) the interaction 
and interfaces of these components with each other and with those in the other layer. Finally, 
the third part of the deliverable (Section 5) provides a detailed description of each use case 
together with relevant benchmarking methodology. 
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1 Introduction 

The growing popularity of AI and analytics in virtually all application domains has led to a rapid 

increase in the amount of data gathered by enterprises and scientific institutions alike, with the 

global datasphere being projected to reach 250ZB by the year 2025. There is significant 

potential for advancing data analytics at the intersection of many scientific, technology and 

societal fields (like particle physics and precision oncology covered in this proposal). However, 

in order to realize these advances in Europe, it is mandatory for the EU to be fully autonomous 

in processing and analyzing extreme amounts of data. Such an autonomy, in turn, requires 

technologies, tools, and solutions that can scale in tandem with both the rate of data growth 

and the computational complexity of analytics and machine learning algorithms.     

Modern analytics and AI workloads are incredibly diverse and consist of a range of scalar, 

vector, and matrix computations. Thus, the traditional workhorse of the computing industry, the 

general-purpose CPU, cannot be optimized to meet the diverse requirements of such 

heterogeneous workloads. This shortcoming of CPUs, in combination with the cessation of 

Dennard scaling, has led to a Cambrian explosion in the adoption of hardware acceleration 

solutions that can meet the demands of extreme scale AI and analytics workloads. 

Unfortunately, most popular solutions today, be it vertically-integrated, application-specific 

accelerators like Google TPU, or generalized, data-parallel SIMT processors like NVIDIA GPU, 

use proprietary, closed hardware—software stacks as shown in Figure 1, leading to a 

monopolization of the AI acceleration market by a few large industry players, or individual silos 

amongst other niche players that use their own proprietary solutions . There are a few open 

solutions, like OpenMP, but they are primarily catered for HPC applications. 

 

Fig 1. SYCLOPS vision: From closed-source, proprietary AI acceleration solutions (left column) 

to an open ecosystem of standards-based, interoperable solutions (right column). 

The vision of SYCLOPS project is to enable better solutions for AI/data mining for extremely 

large and diverse data by democratizing AI  acceleration using open standards, and enabling 

a healthy, competitive, innovation-driven ecosystem for Europe and beyond. In order to 

achieve this vision, SYCLOPS will integrate expertise in computer architecture, programming 

languages, systems and runtimes, Big Data, High-Performance Computing, autonomous 

systems, High-Energy Physics, and precision oncology, with the aim of developing novel 

infrastructure, platform, and application tools for AI acceleration.   As shown in Figure 1, this  

vision relies on the convergence of two important trends in the industry: (i) the standardization 

and adoption of RISC-V, a free, open Instruction Set Architecture (ISA), for AI and analytics 
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acceleration, and (ii) the emergence and growth of SYCL as a cross-vendor, cross-

architecture, data parallel programming model for all types of accelerators, including RISC-V.     

The goal of project SYCLOPS is to bring together these standards for the first time in order to 

(i) demonstrate ground-breaking advances in performance and scalability of extreme data 

analytics using a standards-based, fully-open, AI acceleration approach, and (ii) enable the 

development of inter-operable (open and vendor neutral interfaces/APIs), trustworthy 

(verifiable and standards-based hardware/software), and green (via application-specific 

processor customization) AI systems. In doing so,  we will use the experience gained in 

SYCLOPS to contribute back to SYCL and RISC-V standards and foster links to respective 

academic, industrial and innovator communities (RISC-V foundation, EPI, Khronos, ISO C++). 

Bringing together the two standards enables codesign in both standards, which in turn, will 

enable a broader AI accelerator design space, and a richer ecosystem of solutions compared 

to current proprietary, closed solutions that force a design choice. 

In this document, we first provide an overview of the overall architecture of the SYCLOPS 

hardware—software stack and introduce various abstraction layers (Section 2). Following this, 

we provide an in-depth discussion of the two core layers of the SYCLOPS stack, namely, 

infrastructure layer and platform layer, focusing on various components in each layer (Sections 

3, 4). Finally, we provide a detailed description of each use case, discuss the libraries that will 

be implemented in SYCLOPS to support those use cases, and provide an overview of relevant 

benchmarking methodologies (Section 5). 
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2 Overall Architecture 

 

Fig 2. SYCLOPS architecture 

The core SYCLOPS hardware—software stack consists of three layers: (i) infrastructure 

layer, (ii) platform layer, and (iii) application libraries and tools layer. 

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the 

stack and provides heterogeneous hardware with a wide range of accelerators from several 

vendors. A key accelerator in this layer will be the RISC-V processor designed by CSIP. 

CSIP will advance their processor description language codAL and their EDA tool Codasip 

Studio to offer native support for design, verification and implementation of RISC-V 

processors with customizable vector units. Using these tools, CSIP will develop an RISC-V 

Vector (RVV) accelerator. In order to demonstrate (i) an end-to-end integration of open 

standards, and (ii) the cross-architecture, cross-vendor performance portability of SYCLOPS, 

our partner HIRO will package the RVV accelerator with CPU, GPU, and FPGA from several 

other leading processor manufactures (Intel, ARM, NVIDIA, Xilinx) and build modular, 

energy-efficient edge microdatacenters (EMDC). A key aspect of EMDC design will be 

investigating the use of state-of-the-art PCI 5.0 for interconnecting processors and high-

performance storage. The EMDC will be used as a research and development testbed. It will 

be hosted by the coordinator (EUR), who will provide shared access to all partners. 

Platform layer: The second layer from the bottom, the platform layer, provides the software 

required to compile, execute, and interpret SYCL applications over processors in the 

infrastructure layer. SYCLOPS will contain oneAPI DPC++ compiler from CPLAY, and 

hipSYCL, an open-source SYCL compiler toolchain from UHEI. Both DPC++ and hipSYCL 

compilers already support a wide range of processor backends for SYCL. In SYCLOPS, they 

will be extended to support a RISC-V backend with native support for vector instrinsics. In 

terms of SYCL runtime, the DPC++ runtime will be extended to enable the autonomous 

systems use case by supporting end-to-end platform software required for offloading 

computation to the RVV accelerator. hipSYCL, in contrast, will be used as a research vehicle 

to investigate the implementation of advanced, application-aware, graph-based runtime, and 
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multi-device work scheduling algorithms. In terms of SYCL interpreters, SYCLOPS will 

contain Cling from CERN. As mentioned, Cling is a state-of-the-art C++ interpreter that is 

being used as an interactive code development environment for exploratory analysis. Cling 

will be extended to natively support SYCL and enable Jupyter notebook-based, accelerated 

ad-hoc analytics. 

Application libraries and tools layer: While the platform layer described above enables 

direct programming in SYCL, the libraries layer enables API-based programming by 

providing pre-designed, tuned libraries for various deep learning methods for the PointNet  

autonomous systems use case (SYCL-DNN), mathematical operators for scalable HEP 

analysis (SYCL-ROOT), and data parallel algorithms for scalable genomic analysis (SYCL-

GAL).  
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3 Infrastructure Layer 

In this section, we describe various components of the infrastructure layer in detail. More 

specifically, we describe (i) the challenges in developing custom RISC-V accelerators and 

the suite of solutions from CSIP that will be used to address them, and (ii) the challenges in 

designing energy-efficient data centers and how the edge microdatacenter design from HIRO 

will address them in the context of SYCLOPS. 

3.1 RISC-V cores and vector accelerator (CSIP) 

3.1.1 Rise of RISC-V 

There are a large number of microprocessors available in the ASIC market. ARM is the most 

popular architecture and has the largest market share. ARM has an extensive portfolio of 

high-quality products spanning essentially the entire processor performance range. Their 

offering has served the market well in the last nearly four decades with the following licensing 

models: (i) License an existing microprocessor of the portfolio which cannot be modified in 

any way (neither the ISA nor the microarchitecture), and (ii) granting the right to implement a 

customized microarchitecture to the licensee who must build the entire processor, but not 

change the ISA. 

Over the past few years, RISC-V, a standardized, free, open Instruction Set Architecture, has 

emerged as an alternate solution in the AI acceleration space. At its core, RISC-V has a very 

simple ISA with 47 instructions. But application verticals can customize the ISA with optional 

extensions that are often realized through specific licensing deals between a RISC-V vendor 

and the licensee. Thus, RISC-V creates a new business model that allows companies to 

provide commercial support and other deliverables that are needed for the processor 

verification or integration into a chip as shown in Figure 3 (right column), in contrast to the 

classic ARM-style licensing (left column).  

 

 

Figure 3. A comparison of business model for state of the art (left hand side, classic 

commercial) with the potential RISC-V commercial (middle) and fully open source (right) 

options 

However, the design automation tools used by RISC-V vendors today have a major limitation 

that the implementation and verification of custom extensions is largely a manual process 

with limited automation. In order to develop a RISC-V-based acceleration solution, one 
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needs a Hardware development kit (HDK), which is a set of tools necessary to simulate, 

debug, implement, and verify a RISC-V processor, and a Software development kit (SDK), 

which is the set of tools necessary to create, simulate, and debug programs for the newly 

designed processor. As the SDK and HDK are tightly coupled with the processor ISA, each 

customized RISC-V processor needs its own SDK and HDK. Thus, in order to enable a rapid 

adoption of RISC-V in the AI acceleration space, the SDK and HDK tools should be ideally 

autogenerated based on a hardware developer’s processor specification. However, current 

RISC-V vendors do not provide such automation. For instance, the most popular RISC-V 

Semiconductor Intellectual Property (SIP) providers today are SiFive, based in the US and 

Andes Technology, based in Taiwan. SiFive offers a range of embedded and application 

RISC-V processors. They are configurable and have the ability to be customized through 

their SCIE (SiFive Custom Instruction Extensions). However, using SCIE is largely a manual 

approach with verification of custom extensions being non-trivial. There is no automation for 

SDK, and HDK tooling is enhanced manually. Andes Technology has a range of RISC-V 

cores from embedded (lower-end) to application class (higher-end). Andes CoPilot tool can 

partially automate the implementation and verification of custom instructions, but the user is 

left to manually write the Register Transfer Level (RTL) code to implement the new 

instructions. There is also no automation for SDK and their tools also need to be enhanced 

manually. This lack of automation creates barriers for hardware developers and hinders 

RISC-V adoption for AI acceleration. 

3.1.2 CSIP background IP 

The basis of the CSIP’s contribution for the SYCLOPS project comes from two key pillars of 

established intellectual property: 

EDA tool suite: A comprehensive suite of tools that enables the development of custom RISC-

V cores and SDKs based on a high-level description in the CodAL language. Our EDA suite 

comes in two variations - Codasip Studio and CodeSpace. The Codasip Studio also offers the 

ability to create a virtual prototyping platform, which will expedite the design and development 

process. Key features of Codasip Studio include: 

 Automated Generation of Software Development Kits (SDKs): automatic 

generation of SDK tailored for each variant of the core design. This SDK includes a 

compiler, linker, debugger, simulator, and more. The ability to quickly generate this 

tailored SDK helps to streamline the development process. 

 Virtual Platform Prototyping: Codasip Studio supports the creation of a virtual 

platform prototype. This feature provides designers with an environment for early 

software development and debugging before the physical chip is manufactured. 

 Comprehensive Verification: The tool suite enables comprehensive verification at all 

levels - from an Instruction-Accurate (IA) C++ model to RTL - ensuring the highest level 

of confidence in the core design. 

 Design Space Exploration: With the Codasip Studio, designers can explore the 

design space by modifying parameters and assessing the impact on Performance, 

Power, and Area (PPA). 

A lightweight variation of the Codasip Studio is referred to as Codasip Codespace. 

The Codasip CodeSpace package is aimed at the development of software applications. 

The package contains a graphical user interface (GUI) with perspectives for profiling and 

debugging and allows easy integration of the Codasip SDK. 
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Codasip RISC-V cores: A collection of off-the-shelf RISC-V cores suitable for a wide range 

of use cases - from low-power embedded systems to high-performance application class 

processors. The RISC-V processor cores come with configurable sets of RISC-V extensions 

and with configurable interfaces. The software development for the RISC-V cores can be done 

by either leveraging the Virtual Platform Prototyping capabilities of the Codasip EDA tools or 

by using a reference design prebuilt for a selected FPGA platform. 

3.1.3 CSIP Foreground IP 

RISC-V ISA and particularly the newly introduced RISC-V vector extensions (RVV) have 

started gaining momentum in the AI acceleration space. RVV extensions are a set of 

instructions that allow RISC-V processors to process data effectively in a Single-Instruction 

Multiple Data (SIMD) fashion. CSIP contributions in the SYCLOPS project are envisioned in 

the following three categories:  

1. CodAL improvements: as our first contribution, we aim to define enhancements/ 

extensions to the CSIP’s processor description language (CodAL) and Codasip Studio 

APIs extensions to enable simple, cost-effective, and application-driven customization 

of RVV accelerators. 

2. PPA improvements  as our second contribution, we target integrating CodAL 

extensions in Codasip Studio, and use it to develop fully customized, RVV acceleration 

cores that are customized to target the AI and analytics workloads defined by our use 

cases. The RVV development itself will be carried out outside of the SYCLOPS project. 

Based on the feedback from the SYCLOPS project, CSIP will aim to prioritize 

performance, power, and area (PPA) improvements on selected features of the RVV-

accelerator. These features could include, but are not limited to the ratified ISA, custom 

instructions, micro-architecture, and memory subsystem.  

3. Contributing to the integration of an RVV reference platform to several other multi-

vendor CPUs and GPUs (for comparative evaluation) in an edge microdatacenter 

(EMDC). 

3.1.4 Interfaces & Integration 

The RISC-V RVV accelerator will be provided via one or both types of interfaces referred to 

as following: 

 SW Interface: A virtual prototyping platform in Codasip Codaspace/Studio for 

compilation, code generation, and evaluation of code for RISC-V architectures. This 

will be used for making RISC-V compatible SYCL compilers and for building user 

applications and analyzing their performance. 

 HW interface: A precompiled bitstream for a selected FPGA board, where the exact 

specification depends on the core customizations and necessary interfaces for the 

remaining Infrastructure components.  

Two variations of either the virtual prototyping platform or the precompiled bitstream will be 

developed in the project.  

 v1.0 (M18): An application core based on CSIP application class processors. It is 

capable of running a full-featured RTOS and offers high levels of customization, from 

adjusting cache sizes to modifying the number of cores. 
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 v2.0 (M33): It will be based on the same model but it will include at least partial support 

of the RISC-V vector extension or some other improvements. Note that the complete 

implementation of the vector extension is beyond the scope of the SYCLOPS project. 

3.2 Edge Micro DataCenter (HIRO) 

3.2.1 HIRO EMDC Introduction 

Edge computing is essential to realizing the full potential of artificial intelligence (AI), machine 

learning and internet of things (IoT) as it can dramatically boost services and applications by 

supporting AI natively, instead of relying on AI in the cloud. The three SYCLOPS application 

use cases described in Section 5 of this document would all benefit from a powerful edge 

computing infrastructure that can process large amounts of data at its site of generation 

without incurring the overhead of data movement to the cloud. Such an infrastructure needs 

to be highly scalable, compact, and energy efficient. As different workloads benefit from 

different processing solutions, the edge infrastructure should be capable of modularly 

integrating any type and quantity of CPUs, GPUs, FPGAs. This is particularly relevant for 

SYCLOPS whose goal is to demonstrate the portability of the hardware—software stack 

across multi-vendor hardware.  

HIRO will develop an innovative high-performance, reliable edge infrastructure that will be 

used as a development testbed in SYCLOPS. The EMDC based edge infrastructure is a 

distributed infrastructure of turn-key datacenters that are fully self-contained (power, cooling, 

security, etc.) and do not require a dedicated support infrastructure. The total cost of 

ownership (TCO) of an Edge infrastructure based on a mesh of EMDC’s compared to regular 

DC infrastructure, will be lower, considering the whole infrastructure life cycle (purchase, 

operation, maintenance, and refresh cycles) and the modifications required in the operating 

environment (power and cooling infrastructure, building, etc.). There is very little 

transparency on true data center costs and many studies and calculation models found 

online, show vendor bias. We have taken an end-to-end power transformation of a regular 

datacenter and compare it with the energy savings of am EMDC based infrastructure (See 

Figure 4). The energy savings of the EMDC are created through gravity driven 2 phase 

cooling, no lumination, no fans, shared redundant and 48V DC power, cognitive engine 

driven workload and node management.  

 

Figure 4. EMDC energy efficiency vs traditional DC energy efficiency 

The EMDC infrastructure is built from has power supply, cooling, dual fabric (Ethernet and 

PCIe switching) and a customizable mix of CPU, GPU, FPGA, NVMe storage. The EMDC 
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capacities range from 8, 16, 24 nodes in a single enclosure (wall or rackmount) to multiples 

of 24 nodes (3U) mounted in a rack(s). The cooling is based on a refrigerant and has a PUE 

of 1.03. At the highest utilization levels of the EMDC, the condenser will require little fan 

support, at low and medium utilization levels the EMDC operates completely passive. The 

average PUE currently has stalled around 1.5 with state of the art in Google datacenters of 

1.2 and average PUE of 2.0 in small scale edge data centers and server rooms. 

The cooling of the EMDC, uses a passive two-phase cooling system to create a new 

innovative and efficient cooling solution. The cooling loop can handle non-uniformity in the 

loop (different heat load for each nodes) while being a self-regulated (gravity driven) system. 

 

Figure 5. (a) PUE improvement rate across years, (b) HIRO EMDC design 

The current EMDC design is based on the com-express form factor, which does not have 

PCIe gen5 on its roadmap. Currently HIRO is writing proposals for additional EU funding to 

develop a next generation based on the com-HPC form factor with PCIe gen 5 (including 

CXL capabilities). 

3.2.2 SYCLOPS EMDC Overview 

In the context of SYCLOPS, our EMDC deployment and experimental validation in WP5 will 

only focus on 8-node block.  The envisioned hardware solution that will be deployed at the 

end of the project (EMDC V2.0 at M33) will have the following innovative properties: 

1. Specifically designed monoblock chassis with innovative passive (i.e., fan less) two-phase 

cooling system based on Loop Thermosyphon (LTS) and nanoparticles.  The EMDC 

monoblock is designed to be a modular system with 8 custom boards interchangeable 

(CPUs, GPUs,  RISC-V FPGA board, etcetera), one power supply board, one ethernet switch 

board, and one PCIe  switch board.   

2. New backplane and connector including both dual x8 lane Gen5 PCIe interface and 4 x 

10/25G Ethernet link for unprecedented intra- and inter-EMDC throughput. This will be one of 

the first small-form-factor EMDCs in the market to support PCIe Gen5. 

3. New compact card design fitting the com-HPC form factor.  
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The EMDC will be heterogeneous in two ways. First, in terms of silicon type, we will 

implement energy efficient embedded Systems on a Chip (Intel, AMD, ARM) and the first 

FPGA system on chip (Xilinx Versal) and GPU system on chip (Nvidia Jetson Xavier). 

Second, in terms of cluster type, different nodes will support a varied selection of CPU, 

FPGA and GPU.  

Multi-tier storage. The EMDC can support multi-tier storage. 

• Tier 3: Each storage nodes carries 4x M2 NVMe node accessible via PCIe Gen 5.A 

storage centric EMDC block, 1 FPGA node + 7 Storage nodes (7x 8TB) enables in 

stream processing, big data ingestion, cleaning and storage.  

• Tier 2: A mixed EMDC for training and inferencing: The tier for the raw data can be a 

storage centric EMDC with many storage nodes. EMDC has enough storage nodes to 

store the training data close to the accelerators.    

• Tier 1: Storage on the compute and accelerator node, only accessible to the node  

itself. Used for storing a model, an AI agent, but also cleaned data to iteratively  

improve the model. Storage can also be used to store incoming data that needs to  

be processing/ inferencing by the agent.    

The storage architecture can be customized to accommodate the growing datasets and data-

variety, offering data storage federation across multiple data sources, chosen carefully to be 

the  optimal placement for the corresponding different types of data; e.g. time-series data 

(often placed in graph-databases, other NoSQL databases), video, image, and audio files 

(often placed in general-purpose shared filesystem such as NFS), log data (often placed  in 

Splunk, Hadoop), unstructured data (often placed in HDFS or S3, RDBMS, NoSQL,  

Business intelligence systems).   

PCIe Gen5.  PCIe 5.0 was introduced as a direct successor to PCIe 4.0 and is quickly 

becoming an popular alternative. It is both backward- and forward-compatible, meaning it will 

work with devices using past generations of PCIe as well as any future versions. It supports 

400 gigabit Ethernet and can handle nearly double the throughput of PCIe 4.0, it allows for 

high-speed networking. 

PCIe 5 brings huge boosts in performance speed and bandwidth. With Gen 1, we saw 

bandwidth speeds of 250MB/s and data transfer rates of 2.5 GT/s (gigatransfers) per lane. 

Now with Gen 5, with the PCIe next-gen rule, speeds will reach up to 32 GT/s of data 

transfer and 4GB/s of bandwidth per lane. 

The additional bandwidth of PCIe 5.0 means that devices may be able to achieve the same 

throughput while using fewer lanes, thus freeing up the number of lanes available. For 

example, a graphics card that used to require x16 bandwidth to run may now run at the same 

speed with x8 lanes, thus freeing up x8 lanes for use. PCIe Gen 5 effectively allows these 

lanes to become more available for further additions via PCIe slots.  

A dual fabric (PCIe, Ethernet) that supports high performing data ingestion and distribution 

and to provision sufficient bandwidth for any population of the 8 nodes (storage, acceleration,  

CPU, GPU centric or a mix) will be investigated. The PCIe switching will have two levels, a 

PCIe switch for each 8-node block and, if needed, an overarching PCIe switch to master 

three PCIe  switches. 

CXL: CXL, now at the 3.0 specification level, provides low-latency links and memory 

coherency between computing devices. It builds on the enormous momentum of PCI 
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Express (PCIe)technology by adopting the PCIe PHY as its physical interface. CXL 1.1/2.0 

use the PCIe 5.0 PHY operating at 32 Gigatransfer per second (GT/s).  

The CXL.memory protocol enables a host, such as a processor, to access device attached 

memory using load/store commands. Sharing memory resources between computing 

devices, such as a CPU host and an AI accelerator, can be enabled by using all three of the 

CXL protocols. For instance, a server with a CXL-connected accelerator would enable the 

accelerator to use the CPU’s direct-attached memory for workloads which required greater 

memory capacity. 

Currently the EMDC’s work in AI-enabled federations. The recently started ACES (2023-

2026) EU project will implement swarm technologies to improve the orchestration and 

scheduling of workloads across the heterogeneous autonomous EMDC’s working in ad-hoc 

self-initiated federations. With current CXL technologies the swarm algorithms will be partially 

executed on one or more central locations. Once the CXL 3.0 standard is fully implemented 

and made available through hardware components the EMDC will be able to run the swarm 

technology fully distributed across the CXL infrastructure. 

 

Figure 6. CXL and other technologies used for orchestration of workload in the EMDC 

3.2.3 Interfaces & Integration 

The EMDC outlined will be used as the central development environment in project 

SYCLOPS. The RISC-V bitstream described above will be integrated into the EMDC in 

addition to other processing hardware described in Section 3.2. Two versions of EMDC will 

be developed during the course of the project. 

 EDC v1.0 (M18): In order to facilitate early exploration of hardware prototypes 

developed in the project and to enable cross-layer compatibility checking and inter-

layer integration, a first version of the edge data center (EDC) will be developed and 

deployed by M18. As building a miniaturized comHPC form factor of various boards will 

be done during the course of the project, EDC v1.0 will developed in standard form 

factors during COTS hardware with PCIe Gen5. We refer to this as EDC to distinguish 

it from the v2.0 EMDC. 

 EMDC v2.0 (M33): The second version of the data center will be the EMDC in comHPC 

form factor. 
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4 Platform Layer 

Rise of SYCL. As the RISC-V ecosystem continues to evolve, we are starting to see both 

RISC-V acceleration solutions, where a host control CPU is used in tandem with a RISC-V 

accelerator, and even single ISA solution with a RISC-V host and RISC-V accelerator. This 

naturally necessitates an open programming model that supports a cross-vendor, cross-

architecture computation offloading. Historically, the OpenCL standard has been instrumental 

in enabling hardware acceleration on a wide range of processors, including multi-vendor 

CPU, GPU, DSP, etcetera, for computer vision and HPC applications. OpenCL provided a 

“C”-like language for writing compute-intensive kernels that can be offloaded onto any 

supported accelerator using a runtime API. Thus, one possibility is to use OpenCL as the 

programming model for emerging RISC-V accelerators.  

 

However, OpenCL has several challenges that makes it unsuitable as the model of choice for 

programming AI accelerators. First, the low-level nature of OpenCL was meant to directly 

expose data parallelism in underlying hardware while leaving everything else from data 

movement to kernel dispatch to developers leading to boilerplate code verbosity. Second, 

programs written in OpenCL are not single-source in nature as kernel code needs to be 

separated from host code, represented as strings and separately managed, complicating 

software development. Separate host and device source also loses strong type checking 

safety between host and device code. Third, while OpenCL provides code portability across 

processors, it does not provide support to guarantee performance portability as developers 

have to manually customize the code further to match properties of the underlying hardware. 

These issues with OpenCL are well known in the High-Performance Computing (HPC) 

community, where applications have evolved to adopt more general-purpose programming 

languages like C++ instead of C and FORTRAN, and HPC installations have expanded to 

adopt processors from more vendors. These challenges led to the development of custom 

HPC frameworks like RAJA and Kokkos that bridge the gap by providing C++ abstraction 

layers for portable parallel execution. Thus, in turn, spurred the development of SYCL, an 

open, industry-standard, programming model from Khronos group (who also maintain 

OpenCL).  

 

SYCL is a higher-level programming model that brings hardware acceleration to mainstream 

C++ with the goal of making it easy to write new software similar to CUDA. Unlike OpenCL, 

SYCL provides a single-source programming model for both processors and accelerators, 

where kernel code and host code can co-exist in a single file, vastly simplifying development 

effort. Single-source programming not only enables strong type checking of host and device 

code, but more importantly, as shown in Figure 7, it enables a host of template libraries that 

broadens the code to support the latest patterns, and vastly expands the SYCL ecosystem to 

support data analysis, machine learning, and HPC.  
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Figure 7: SYCL single-source parallel and heterogeneous programming framework 

 

Despite recent advances, the SYCL ecosystem today lacks several tools and technologies that 

are required for it to be used as a drop-in substitute for proprietary solutions like CUDA: (i) 

there is no SYCL RISC-V compiler backend today that can compile a SYCL program to target 

RISC-V accelerators, (ii) there is no SYCL implementation today that supports a graph-based 

task runtime to enable efficient, cross-processor scheduling, (iii) there is no SYCL interpreter 

available today that can enable ad-hoc, interactive data analytics. These limitations create 

barriers for software developers and hinders the adoption of SYCL as the programming model 

of choice for AI acceleration. 

 

In this section, we describe the components at the platform layer of SYCLOPS that will be 

developed to bridge this gap. 

4.1 DPC++ Compiler and Runtime (CPLAY) 

oneAPI is an open, cross-architecture programming model allowing developers to use a 

single codebase across multiple accelerator architectures such as GPUs and FPGAs. 

oneAPI uses SYCL at its core and this is used to implement a set of libraries including math 

and AI using the Data Parallel C++(DPC++)/C++ Compiler. DPC++ is a LLVM-based 

compiler project that implements compiler and runtime support for the SYCL language. 

The existing DPC++ compiler already targets Intel, Nvidia and AMD GPUs. In the platform 

layer, we will enable a RISC-V/RVV backend for DPC++ and validate it on the RISC-V cores 

to support the execution of SYCL applications on RISC-V and other accelerators provided by 

the SYCLOPS infrastructure layer. We will rely on the oneAPI construction kit developed by 

CPLAY to make this possible.  

oneAPI Construction Kit makes it possible to bring the components of oneAPI, in particular 

the DPC++ compiler, to new accelerator processor architectures. The following diagram 

shows how the oneAPI Construction Kit currently makes it possible to add new devices so 

that they can make use of the DPC++ SYCL compiler. 
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Figure 8: Components of the oneAPI construction kit 

The DPC++ runtime allows OpenCL to be used as a plugin. The oneAPI ConstructionKit 

supports this interface and provides runtime and compiler modules. Support for new 

accelerators is done by developing a new custom target. A custom target is made up of three 

key parts:  

 Runtime code (ComputeMux Runtime) 

 Compiler code ComputeMux Compiler) 

 An Optional HAL (Hardware Abstraction Layer) which gives static information and 

simplified runtime interfaces to a device to make getting started easier 

The runtime code will run on the host device and will interface with the target device. It will 

handle aspects such as allocation of and reading/writing memory, queuing of commands and 

executing kernels on the device. The compiler code is typically based on a number of LLVM 

passes that will turn the original kernels into something matching the interfaces required to 

run a kernel on the device.  
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4.1.1 Interfaces and Integration  

In SYCLOPS, the oneAPI construction kit will be used to support RISC-V accelerators. More 

specifically, the DPC++ compiler extended to support RISC-V. Further, the DPC++ compiler 

will also be fine-tuned to ensure scalable auto-vectorization and efficient utilization of vector 

engines in RVV cores. The DPC++ runtime will also be extended to support computational 

offloading to the RISC-V accelerator. 

4.2 hipSYCL Compiler and Runtime (UHEI) 

As part of the SYCLOPS project, UHEI will work on the hipSYCL implementation of SYCL, 

which is a portable, open-source SYCL implementation. Currently, hipSYCL supports 

executing kernels on CPUs as well as Intel, NVIDIA and AMD GPUs. Additionally, hipSYCL 

is designed to be flexible and supports many different compilation flows. This includes 

library-based compilation flows, compilation flows targeted at interoperability with existing 

proprietary models like CUDA as well as a standalone single-pass SYCL compiler. 

In the context of SYCLOPS, we make two main contributions. First, we will generalize the 

hipSYCL compiler and runtime to support RISC-V. Second, we will add support for multi-

device scheduling using a graph-based runtime. This work is intended to allow applications 

to seamlessly use multiple devices without explicit multi-device programming, and thereby 

simplifying the development process. 

4.2.1 Interfaces and Integration  

For RISC-V support, we will build on hipSYCL's generic single-pass compilation flow. In this 

compilation flow, hipSYCL compiles the input code in a single compiler pass to an 

intermediate representation (IR) that is based on the IR of the LLVM compiler infrastructure, 

and then relies on just-in-time compilation at runtime to lower this IR to target-specific 

formats. hipSYCL's generic single-pass compiler is designed to be extensible to new targets, 

and therefore is a suitable target for this work. However, since it was only introduced 

recently, some stabilization work will be required prior to being able to work on RISC-V 

offload. 

From discussion with CPLAY, it was found that the ComputeAorta platform may potentially 

be leveraged by hipSYCL to generate code for RISC-V. This would allow UHEI and CPLAY 

to converge on a common lower layer when targeting RISC-V, which is attractive. In this 

case, it might be sufficient for hipSYCL to generate code in SPIR-V format (which it can 

already do) and add a new runtime backend that relies on ComputeAorta to submit SPIR-V 

to RISC-V devices. Should relying on ComputeAorta not be possible, hipSYCL's single-pass 

compiler will need to be extended with dedicated RISC-V code generation backends. Due to 

the resulting duplication of work in the SYCLOPS stack, this approach is not preferred. 

The interfaces to the upper layers in the SYCLOPS stack are well defined by the SYCL and 

C++ specifications. Code from the application layer that conforms to these standards will be 

able to leverage our developments. For the multi- device scheduling however, it needs to be 

noted that SYCL in its current form was not designed for implicit multi-device execution and 

consequently, some extensions or restrictions to the SYCL API may be necessary. We will 

try to keep these changes as light as possible, and will provide documentation on the 

supported feature set in this execution mode. 

Apart from this, the multi-device graph runtime is mostly self-contained, as it will be 

implemented entirely within the hipSYCL runtime library in a manner that is transparent for 
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other components. An important goal of graph runtimes is to improve utilization and hide 

kernel submission latencies. A first step therefore is to optimize latencies of the hipSYCL 

runtime in order to have a solid baseline for further developments. This requires some 

architectural changes of the current design, such as reducing the number of small object 

allocations e.g. by migrating to an object pool design. 

The new multi-device scheduler can then be integrated into the existing architecture of the 

hipSYCL runtime library. Multiple angles of optimization are conceivable here, including 

performance modelling the device code, collecting execution statistics at runtime or 

leveraging our just-in-time compiler to modify code at runtime to perform kernel fusion or 

generate code specifically tailored to a particular device based on runtime knowledge. 

Another interesting approach in addition to implementing such functionality on the SYCL 

level could also be to provide SYCL-accelerated higher-level algorithms such as C++ STL 

standard parallel algorithms, which then can be distributed across multiple devices. This has 

the advantage that the SYCL runtime then has more knowledge about the nature of the 

algorithm and communication patterns, and can potentially leverage this knowledge to 

provide smarter scheduling decisions. 

4.3 SYCL Interpreter (CERN) 

Exploratory or ad-hoc analytics is an interactive approach to data analytics where users 

iteratively search, analyze, and filter data to identify relevant information via rapid application 

development. Python and Jupyter notebooks are often the tools of choice for such analysis 

due to the ability to perform on-the-fly interpretation and Just-in-time compilation to support 

quick interactive development. Although SYCL is well suited for data-intensive application 

development given its potential to exploit cross-architecture parallelism, it is not yet a good fit 

for exploratory programming due to the long edit-compile-run cycles during development. 

Our goal is to bridge this gap by building on Cling, a unique interactive C++ interpreter that 

has enabled interactive, notebook-based exploration of over 1EB of data in High-Energy 

Physics (HEP) applications at CERN. The Cling C++ interpreter is used to just-in-time 

compile and call runtime-generated C++ source code. This enables runtime type-discovery, 

for instance from data files, and type-safe, efficient, and optimized analysis in an exploratory, 

interactive mode. A typical interface for data explorative programming is Jupyter Notebooks; 

these notebooks see worldwide, wide-spread adoption in all data sciences. Cling is used by 

Jupyter's default C++ kernel. This work will allow any usage of Jupyter C++ kernels to also 

just-in-time compile ("interpret") SYCL code, through the addition of SYCL support to cling. 

4.3.1 Interfaces and Integration  

To this end, we expect that Cling will use OpenSYCL / hipSYCL as compiler backend. Cling 

will be provided with SYCL code, which gets compiled to LLVM intermediate representation 

(IR). In OpenSYCL's "single source, single compiler pass" (SSCP) mode, the compiler will 

then compile this IR code to the actual compute or accelerator backend. This single-pass 

compilation, together with the compilation of SYCL code to IR, will happen at runtime. 

OpenSYCL can compile SYCL code to CUDA; we will use this for benchmarking and 

comparisons. 
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5 Use Cases, Benchmarks & Libraries Layer 

Having described the two core layers of SYCLOPS in Section 4, in this section, we provide a 

description of the three use cases together the relevant supporting libraries for each use 

case.  

5.1 Autonomous systems & SYCL-DNN 

PointNet [11] is a deep learning model designed for processing unordered point clouds, 

which are sets of 3D points representing objects or scenes. Pointnet’s novel architecture can 

process raw point cloud data without needing preprocessing through voxelation or predefined 

grids. The model consists of two main modules: An encoder that uses shared multi-layer 

perceptron to map the input points independently to higher-dimensional space; max-pooling 

is then used to encode a global feature vector; these features are then reduced through fully-

connected layers and combined with trainable weights and biases to calculate an affine 

transformation matrix which is then used to normalize the pose of the input points. A similar 

transformation is then done to the features produced from the pose normalised points to then 

generate a global feature vector describing the entire point cloud. The second module uses 

the global feature vector to perform either classification or segmentation through a series of 

MLPs. 

PointNet and its extensions have a wide range of applications in the automotive, drone, and 

UAV (Unmanned Aerial Vehicles) industries due to their ability to process 3D point cloud 

data efficiently. These applications include object detection and recognition where PointNet 

can be used to detect and recognize identify obstacles, pedestrians, and vehicles in the 

environment by processing point clouds. Furthermore, PointNet can segment point clouds 

into meaningful parts to identify structures such as road surfaces, buildings and vegetation. 

Finally, its encoding module can be used as a preprocessing step to convert commonly used 

unstructured LiDAR/Radar data into meaningful features that can then be used for mapping, 

localization or path planning tasks. 

We will be working on developing the point-net model using SYCL-DNN and oneDNN 

libraries. As existing libraries of primitives for accelerating neural networks, SYCL-DNN and 

oneDNN do not support operators or optimized variants crucial for autonomous systems use 

case. Thus, we will extend SYCL-DNN by implementing support specifically for PointNet. On 

the methodological front, a key challenge in deriving practical inference strategies for 

parameters of Deep/Convolution Neural Networks is that these models are often 

characterized by millions or sometimes billions of parameters.  In this project we will 

implement the remaining operators required for the PointNet model such as concat. We will 

augment SYCL-DNN with an optimized implementation of this method and optimize all other 

operators to be able to use the RVV optimizations available when running on RISC-V cores. 

5.2 High Energy Physics & SYCL-ROOT 

In modern High Energy Physics (HEP) studies, a computational graph is defined as an 

abstraction model to express data flow, selection, and transformation as operators. Lorentz 

vector operations on input arrays are highly common in the construction of operators. 

Coordinate transformation (polar to and from Cartesian) and general linear algebra are 

examples. These basic blocks are found in almost every HEP analysis. These procedures 

are now implemented in C++ for CPU as part of ROOT, a specialized library of 

interconnected components that help scientists with everything from data storage and study 
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to display. In many cases, these actions are the primary computing factor, dominating CPU 

utilization, energy cost, and result latency. 

For the HEP use case, ROOT's analysis interface RDataFrame will be used to implement an 

example analysis. The example analysis reads ROOT files, analyzes them statistically, and 

creates aggregation histograms of the results, corresponding to all the steps, end-to-end, of 

typical physics analyses. The same analysis will be implemented both in C++ and Python. 

The analysis computations can use ROOT's current non-SYCL functions. Some of the 

analysis computations will also be implemented as kernels in SYCL. These kernels will use 

Lorentz vector operations including coordinate transformations. The analysis using SYCL-

kernels will be run both on CPU and GPU, using DPC++(ComputeCPP) and hipSYCL / 

OpenSYCL and its CUDA backend. The analysis without SYCL kernels will run only on the 

CPU. 

The analysis will be run in multi-process mode (multiple analysis processes analyzing data in 

parallel on the same computer) and in multi-threaded mode (multiple threads analyzing data 

in parallel within the same process). Scheduling of GPU usage from concurrent analysis 

(multi-threaded and multi-process) will need to be studied and implemented. The different 

implementations and running modes of the example analysis will be benchmarked to 

compare their throughput. Throughput measures include physics particle collisions analyzed 

per second, gigabytes of uncompressed data processed per second, and overall CPU / GPU 

utilization. We also plan to provide energy measurements. 

To guide development, benchmarking will use the Linux perf performance counter-based 

profiling on CPU in addition to other performance profiling and modelling tools that will be 

developed in SYCLOPS (described in Section 5.4). We expect to use Nsight Compute for 

code using the CUDA GPU backend. We will use flamegraphs to visualize the performance 

measurements and make them accessible to developers. The complete end-to-end 

workflows will also be benchmarked as indicated above (throughput, efficiency, and energy 

usage). 

Among other features, ROOT provides a linear algebra computational library including 

Lorentz vectors. Relevant coordinate transformations and Lorentz vector operations will be 

re-implemented using SYCL as programming language. The ROOT build system will be 

enhanced to enable the inclusion of SYCL code, to be compiled with OpenSYCL / hipSYCL 

and / or ComputeCPP. This code can be invoked through C++ wrapper functions that offload 

large memory buffers to the device. Multiple user interface approaches will be studied in 

terms of performance and usability, where physicists can either program SYCL themselves, 

combining the operations from the Lorentz vector SYCL library, or where an abstraction 

allows computations to be combined and offloaded through generated SYCL code. Some of 

this code will likely be just-in-time compiled using the cling SYCL support.  

5.3 Precision Oncology & SYCL-GAL 

Precision oncology, or tailoring cancer treatment to a person's genetic make-up, has been 

heralded as the next frontier in oncology. Genetics is being utilized to guide therapeutic 

decision-making in breast cancer (BC), and the increasing use of biomarkers for customized 

cancer therapy is predicted to boost the precision medicine market to $119 billion by 2026. 

However, in order to make clinical adoption of precision medicine a reality, the biotechnology 

and healthcare industries must make fundamental advances on two fronts: intelligent 

analysis of heterogeneous datasets and scalable computation to derive timely, actionable, 

life-saving insights. 
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Because of significant improvements in genomic sequencing technology, it is now possible to 

sequence a full human genome for less than $1000 and receive genetic data on several 

molecular levels of the cell (genomic, transcriptome, protein expression, copy-number 

variations, and so on). However, in order to turn this genomic Big Data into useful insights for 

precision medicine, a systematic integrated study of a range of biological datasets is 

required. ACCELOM has created easy-to-deploy, reproducible multi-omics software pipelines 

that combine numerous molecular datasets from a host to investigate association patterns 

between molecular levels using unique, peer-reviewed statistical machine learning 

algorithms. 

At a high level, our pipeline consists of the following steps.  

1. Preprocessing: This step involves the preparation of the raw sequencing data for variant 

discovery. It includes quality control, trimming, alignment, sorting, marking duplicates, base 

quality score recalibration (BQSR), and indel realignment. These steps aim to remove low-

quality or erroneous reads, improve the accuracy of base quality scores, and correct for 

alignment artefacts that may affect variant calling. 

2. Variant calling: This step involves the identification of variants in the preprocessed 

sequencing data. It includes tools for detecting single nucleotide variants (SNVs), insertions 

and deletions (indels), copy number variants (CNVs), and structural variants (SVs). These 

tools use various statistical models and algorithms to distinguish true variants from 

sequencing errors or artefacts. 

3. Variant annotation: This step involves the annotation of variants with functional and clinical 

information, such as gene names, protein domains, amino acid changes, mutation effects, 

pathway memberships, drug targets and clinical trials. Several databases and resources are 

available to provide these annotations, such as dbSNP, COSMIC, ClinVar, OncoKB and 

cBioPortal. 

4. Variant filtering: This step involves the filtering of variants based on various criteria, such 

as quality scores, allele frequencies, functional effects, population frequencies, and clinical 

relevance. These filters aim to remove false positive variants or prioritize variants of interest 

for further analysis. 

5. Variant evaluation: This step involves the evaluation of variants based on various metrics, 

such as sensitivity, specificity, precision, recall, F1 score, concordance, discordance, and 

Mendelian inheritance errors. These metrics aim to assess the accuracy and performance of 

the variant calling pipeline or compare different pipelines or datasets. 

Among these steps, preliminary analysis revealed that the first two steps are the most time 

consuming. For these two steps, we rely on the well-established GATK pipeline. The time for 

each stage of the GATK pipeline can vary depending on several factors, such as the type 

and size of the sequencing data, the computational resources available, the choice of tools 

and parameters, and the complexity of the analysis. However, some rough estimates can be 

given based on previous studies and reports. 

According to a white paper by Intel [9], the preprocessing step can take from 2 to 6 hours per 

sample for whole-genome sequencing data (30x coverage). The variant calling step can take 

from 2 to 4 hours per sample for whole-genome sequencing data. These two steps are the 

most time consuming in the entire workflow. A study by IBM confirms this finding [10], as 

they find that the preprocessing step can take from 3 to 9 hours per sample for whole-

genome sequencing data (30x coverage) using a Power9 processor with 64 cores and 512 
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GB of memory. The variant calling step can take from 1 to 3 hours per sample using the 

same processor. 

Given the time consuming nature of these two stages, hardware acceleration solutions have 

emerged to scale preprocessing and variant calling. Two popular solutions are Illumina 

Dragen, which relies on FPGAs to accelerate the GATK pipeline stages, and NVIDIA 

Parabricks, which instead uses NVIDIA GPUs. Both these solutions are closed source and 

proprietary. Through SYCLOPS, ACCELOM intends seeks to develop SYCL-GAL library and 

integrate it with its genomic data analysis pipeline.  

 

The library will provide accelerated implementations of various steps of the GATK pipeline. 

To this end, we will first address sequence alignment, which can be seen as an extreme-

scale clustering problem under the edit distance metric space. ACCELOM has recently 

developed Accel-Align, a new sequence aligner that uses randomized embedding algorithms 

to provide 10x speedup over state-of-the-art aligners on CPU [12]. The first objective will be 

to develop a SYCL-based version of Accel-Align, that can exploit accelerators. The next 

bottleneck after alignment is post-alignment data preparation. In this task, the aligned 

sequencing reads are subjected to a series of sorting, filtration, and quality estimation steps. 

These steps can be viewed as relational operations on a database. Thus, we will build on 

oneDB, a SYCL library of core data-parallel primitives that has been used to build portable, 

parallel, data analytics engines. The third bottleneck is a pair Hidden Markov Model 

(pairHMM) algorithm in variant calling (Haplotypecaller/Mutect2). The third objective is to 

develop a SYCL-based pairHMM algorithm. These three pieces of SYCL-GAL will be 

integrated to build a new version of the multi-omics pipeline.  

Using publicly available datasets, and well established benchmarking methodologies, we will 

compare the SYCL-GAL-based pipeline with non-accelerated GATK and accelerated, but 

closed-soure, Parabricks and Dragen pipelines if possible. We will measure various aspects 

of the pipelines, including overall execution time, memory requirement, weak and strong 

scaling etcetera, and use it to compute various metrics like cost (in case of cloud-hosted 

pipeline) and energy consumption. 

5.4 Performance profiling and Modeling 

In order to develop the three libraries (SYCL-DNN, SYCL-ROOT, SYCL-GAL) and optimize 

their performance on a range of diverse processors, one needs performance profiling and 

performance modelling tools. Performance monitoring is a critical aspect of modern 

computational systems, providing detailed insight into the performance, which might be 

useful for driving software and hardware design optimizations. In this context, modern 

processor designs provide hardware performance counters to enable the capture of 

performance metrics over monitoring tools. The insight provided by configuring and polling 

the performance counters enables software developers to take full advantage of the available 

hardware resources, aiding in the optimization process. Similarly, hardware designers may 

leverage these tools to identify performance bottlenecks, a possible focus point during future 

design iterations. 

Accessing hardware counters is not a trivial task since they are often inaccessible at the 

user’s privilege level, where most applications operate. In this sense, it requires an interface 

in the operating system’s kernel for configuring and reading the counters in an environment 

with an elevated privilege level (e.g., system call). Moreover, different architectures may offer 



 

Copyright © 2023 SYCLOPS | DELIVERABLE 2.1 – Architecture, interface and benchmark specification 
                                      Page 27 of 30 
 

distinct sets of performance counters or use different names/indexes to access equivalent 

counters, posing a significant challenge when attempting to profile an application across 

multiple platforms. Thus, configuring and accessing these counters is also platform-

dependent, requiring different sequences of instructions in each ISA.  

To facilitate performance profiling across architectures, some tools standardize this process 

by mapping generic events to platform-specific counters and providing the means to access 

them, such as Perf, PAPI [1] and LIKWID [2]. Perf, a Linux kernel native tool, consists of a 

kernel module to access hardware counters and a command line tool, allowing for the 

performance analysis of applications through the terminal. It can produce reports of varying 

detail and complexity while annotating the source code or the binary with specific event 

counters, breaking down the performance profile by functions/kernels, and highlighting key 

sections of the application. 

PAPI - Performance Application Programming Interface [1] is a portable interface for 

performance profiling, which allows the configuration of performance counters with both 

native and generic predefined events by mapping one or more platform-specific identifiers. 

LIKWID [2] provides both a command line application and a library for analyzing specific 

regions of an application, which provides native support for thread pinning and multicore 

profiling. Although its API may be less complex than PAPI's, the performance counters 

require separate configurations through a command line tool. 

Although Perf, PAPI, and LIKWID provide powerful capabilities, some events that a 

processor’s hardware counters may not capture can be obtained through other methods. For 

instance, a user may wish to measure the number of retired instructions of a particular type 

for which a counter is unavailable. They can instead rely on binary instrumentation, which 

inserts instructions into the compiled binary that measure any number of events. 

Consequently, this process does not preserve the original performance, meaning 

instrumentation is better suited to characterizing the application’s structure and not its 

performance. For instance, Intel's Pin is a binary instrumentation tool, allowing for the 

dynamic just-in-time instrumentation of compiled binaries. Intel SDE, built atop Pin, is a tool 

that generates instruction traces and creates an opcode histogram, breaking down the 

number of executed instructions and grouping them into categories. 

Simulation tools are a popular approach for determining an application’s instruction profile, 

which is a crucial part of performance modeling. While running an application in a simulated 

environment is slower and usually not representative of its real performance, it can help 

analyze it in greater detail, producing instruction traces and additional statistics to help build 

an opcode histogram. For example, the gem5 simulator [8] can simulate many different ISAs, 

also allowing simulation across different platforms. The computer architecture can also be 

simulated in greater detail, producing an extensive set of execution statistics along with the 

instruction trace. 

5.4.1 Roofline Modeling 

Roofline modeling is a well-established tool for performance analysis, particularly in the 

context of HPC. The performance is characterized by the ratio between achieved 

performance, usually expressed in terms of floating-point operations (FLOPS/s), and the 

arithmetic intensity of an application in terms of operations per byte (e.g., FLOPS/byte). By 

visually representing the performance of applications alongside the capabilities of the 

underlying architecture, the roofline model offers an intuitive understanding of the platform's 

capabilities and whether the application is exploiting them effectively. Furthermore, the 
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position of the application point in the roofline model offers additional insight into the possible 

performance bottleneck, which can help guide the software optimization process. 

The Cache-Aware Roofline Model (CARM) [3] is a remarkably insightful performance model 

which considers the hierarchical nature of most modern memory subsystems, thereby 

providing additional insights when compared to the Original Roofline Model [4]. CARM 

provides a more detailed representation of the performance upper-bounds, depicting one 

roofline for each memory level, helping to accurately identify the performance bottlenecks of 

applications, with a special emphasis on data locality. In a nutshell, the roofline model has 

two regions: the memory-bound and the compute-bound region. The former focuses the 

performance analysis on the respective memory level’s bandwidth and displaying low 

arithmetic intensity. The core’s computational throughput instead limits compute-bound 

applications and have a high arithmetic intensity. The two zones join at the ridge point, where 

applications fully exercise both processor subsystems simultaneously.  

In this regard, CARM’s construction requires two benchmarks to be integrated: the memory 

and the compute benchmark. The memory benchmark measures the sustainable bandwidth 

of each memory level and consists of a set of microbenchmarks, each operating on an array 

of a different size, in order to allow for targeting different memory levels. Each 

microbenchmark traverses the previously referred array, performing a load or store operation 

on each element, the ratio of which can be adjusted to reach the peak bandwidth. The 

compute benchmark measures the peak compute performance of the architecture, e.g., the 

amount of delivered floating-point operations per unit of time, using instructions that 

maximize the FLOPs per cycle, such as SIMD instructions performing fused multiply and 

add. 

This type of performance modeling has been integrated into popular x86 CPU performance 

analysis tools such as the Intel Advisor or AMD’s µProf. Roofline modeling capabilities have 

also been added to performance analysis tools for GPUs, such as AMD’s Omniperf and 

NVIDIA Nsight. 

5.4.2 Performance Profiling and Modeling in RISC-V Systems 

Similarly to other ISAs, different RISC-V architectures have different sets of hardware 

performance counters available. However, the standard mandates three counters that must 

be present across all architectures: clock cycles, instructions retired, and time counters. 

While these are sufficient for a simple performance analysis based on execution time, more 

detailed profiling requires the configuration and availability of additional performance 

counters. Tools such as Perf or PAPI would enable users to profile their applications in a 

portable manner, not requiring detailed knowledge of the ISA (to configure and read the 

counters) or the architecture (to know which events are counted and their identifiers). 

The authors in [5] propose a RISC-V performance profiling framework, extending the limited 

support for RISC-V ISA performance monitoring in Perf within the associated kernel module, 

PAPI, and libpfm4. Additionally, it lists the events of two RISC-V architectures in both Perf 

and PAPI, mapping them to PAPI’s preset events.  

In this regard, the RISC-V specification still needs to provide a standardized way to obtain 

power and energy measurements. However, custom implementations are free to add 

interfaces for power consumption measurement whereas avoiding conflict with the base ISA 

standards. Such an interface, which could operate similarly to Intel’s RAPL, would be 

essential in developing insightful models considering the energy efficiency of applications 

and architectures [6]. 
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In order to construct roofline models in RISC-V systems, it is essential first to determine the 

system's peak arithmetic performance and memory bandwidth. While a more robust set of 

performance counters may be necessary to profile an application in the roofline’s context 

effectively, the three base counters in the RISC-V specification are sufficient to build the 

model. Considering the programmatically generated micro-benchmarks, the number of 

floating-point operations and bytes can be determined during generation, while the cycle 

counter provides the execution time. Regarding the target architecture implementing the 

RISC-V Vector extension, the previously elaborated benchmarks can be adjusted to use 

vector instructions instead. Moreover, the benchmarking process may benefit from a cycle 

counter in the accelerator for improved accuracy for a decoupled vector architecture. 

However, it can fall back on parent core’s counters and existing synchronization methods. 

In order to improve the accuracy of the benchmarking process, some constraints must be 

taken into account to provide consistent results. A significant contributor to the inconsistency 

of the measurements is the operating system’s influence, which can be minimized by pinning 

threads to specific cores and increasing their scheduling priority.  Other external factors can 

be mitigated by both normalizing the execution time of each microbenchmark and running 

them a large number of times, eliminating outliers.  

In the context of RISC-V, the ISA simulator can generate the execution’s instruction trace, 

which can be used to build the application’s instruction profile. The work proposed in [7] 

develops this concept, thus providing a function-level breakdown of an application’s 

instruction profile through Spike simulation and binary analysis, using it as a base for timing 

and energy models. These features can be potentially packaged in a dedicated tool, which 

can handle benchmark generation, execution and performance measurement, and model 

construction. Automating this process means the CARM can be used as a tool for 

comparative evaluation, helping to quickly determine the capabilities of various designs, 

representing them intuitively, and facilitating their comparison.  

Furthermore, an automated tool may enable performance modeling to be used in the 

hardware design process. While performance models have traditionally been applied to 

software optimization, identifying performance bottlenecks and possible optimization 

approaches, whether those same insights can help guide the hardware design process 

should be investigated. A configurable architecture could be scaled according to the 

identified bottleneck of a particular application or set of applications, improving performance 

for the target use cases. 

5.5 Interfaces and Integration 

All three libraries will rely on the SYCL compilers from the platform layer described in Section 

4 to compile code to relevant processor backends. They will all be deployed on the EMDC 

described in Section 3 and evaluated against a variety of multi-vendor accelerators. The 

profiling and modelling tools described in Section 5.4 will be used to optimize the 

performance of these libraries. Employing performance modeling techniques for the three 

SYCLOPS use-case applications will require the evaluation of their instruction profile and 

determining their arithmetic intensity in the context of roofline modeling. Three possible 

approaches to this problem are implementing the necessary hardware counters, the code or 

binaries' instrumentation, or the instruction trace's simulation and analysis. The resulting 

insights will help drive optimization efforts, identifying whether the application effectively uses 

the available resources and which optimization approach should be taken. Finally, an in-

depth benchmarking study will be performed using each library in the context of its use case 

to identify improvements achieved via SYCLOPS. 
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